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We investigate the process of ultrafiltration with gel formation in laminar flow in a plane channel in the case 

of nonideal selectivity of the membrane. 

The technology and facilities of membrane processes are important areas of scientific research such as the 

production of new membranes with improved characteristics. 

Extensive use is made of plane-frame membrane apparatuses based on a slotted channel with membranes 

placed (laid out) on its walls. In view of the large specific surface of the membranes laid out (a small height of the 

intermembrane channel), ultrafiltration is usually carried out in a laminar flow regime and is characterized by 

formation of a gel layer on the surface of the membranes. To find a means for effective separation of solutions, it 

is necessary to conduct a careful investigation of two factors: the selectivity and productivity of the given membrane. 

They can be studied only on the basis of ideas about the real mechanism of mass transfer through a membrane 

and the processes occurring on its surface. The theoretical description of the latter in the case of laminar continuous- 

flow ultrafiltration in plane slotted channels cannot be considered satisfactory [1 ], and the present work is intended 

to fill this gap to some extent. 
We formulate a transfer equation for the process of laminar ultrafiltration. First, we examine the kinetic 

equation of gel formation, which is often written in incorrect form [2 ]. 

We set up the balance of the mass supplied to and removed from the membrane under the condition of 

ideal selectivity of it: 

= - cg  v "o + DC II,. (1) 

The equation of the gel surface is specified in explicit form (see Fig. 1): 

y = f (x, t) ,  

then for a unit normal to the surface 

"o = ( -  Ix i + j ) / q  I +  yj)2 

We note that 

i 

d Y = f x d x + f t d t ,  8n = S n n  0 = f t ' d t / x /  1 + (fx) 2 .  

We take into account that 

/ x  / x  

V = u i - v ] ,  
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Fig. 1. Formation of a gel layer.  

c ; b  = .o (c )  + c)~ 

and from the balance equation we obtain the kinetic condition for formation of a gel layer  on the me mb ra ne  surface 

in the plane case: 

cd /  = c,  ( ~ z2 + 7)~ + o ( -  Z2Cx + c;)~. 

Below, we will assume the gel layer  on the membrane  to be immovable, forming, as it were, a cont inuat ion of the 

membrane;  as a result,  we have 

A t 

u l f f x  = 0 ,  g c x l i =  0 

by virtue of the fact that CI/= Cg = const. Thus,  the kinetic equation for the gel layer  takes the form 

A t 

Cj t '  = Cgvf + D C y  If. (2) 

In the case of nonideal  selectivity of the membrane,  the mass balance should take into account withdrawal of solute 

with the permeate ,  i.e., 

Cgf t = Cg (1 - C/i/Cg ) v /+ DC'yl/. (3) 

Here  Cfi is the concentrat ion of solute in the permeate.  

With allowance for gel formation we obtain the velocity distr ibution in a plane slotted channel  for a laminar  

regime of flow. We will assume that  the flow at the channel  inlet is fully developed (since the length of the channel  

greatly exceeds its height,  the inlet hydrodynamic  section can be el iminated from considerat ion) .  Th e  flow rate of 

the liquid through the cross section of the channel  considerably exceeds the flow passing through the membrane ,  

while the thickness of the gel layer f is much smaller than the half-height  of the channel  h. In this case the equations 

of motion and continuity acquire the form 

- p x + ~-~'~ = 0 ,  (4) 

P'y = o, (s) 

The  boundary  conditions are 

A f  A t 

u x + Vy = 0 .  (6) 

A A A 

o V/(y / ) .  U ~ , " ~ =  - -  ~ , 
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A t 

V = 0 ,  U y = O  ( y = h ) .  

(7) 

From Eq. (5) it follows that  P = P(x). Integrating Eq. (4), taking account of conditions (7), we find 

The continuity equation yields 

(8) 

v 3t~h3 O [Px 1 3.[h 3 ( y - . t ) ( y + . f ) + 2 h  2 

From this it follows that 

- ¢ / / h  - 3 ) / ]  Y (Y .O (Y + .O _ yf h2 
2ha )J 

(9) 

We determine the mean flow rate 

3 

I f udy= OP 1 -  (11) 
"Ux- h -  f f 3~ Ox " 

Then at the channel inlet at x = 0 

h 2 OP (12) 
~0 = 3Fz Ox " 

Integrat ing Eq. (10) with allowance for relation (12) and  substi tut ing the result into Eq. (8), we obtain an 

expression for the longitudinal velocity component: 

u - -uoh - V/dx 
h (1 - f /h)  3 0 h 

(13) 

To describe the phenomenon of concentration polarization, i.e., gel formation, we use an  equation of 

convective diffusion that describes the process of substance accumulation at a given point of space as a function of 

time. With allowance for the above assumptions it takes the form 

c;  + + 0 %  (14  

The process of separation of solutions by the method of ultrafiltration is characterized by large Schmidt  numbers,  

and therefore the characteristic time of the change in the concentration field considerably exceeds the characteristic 

time of the change in the velocity profile. Consequently,  the dynamic problem can be considered to be s ta t ionary 

(this was done above), i.e., each instantaneous distribution of concentration corresponds to its own stat ionary 
distribution of velocities at the given moment. The boundary  conditions before the point of gel formation on the 

membrane and after it will be substantially different: 

, ,  . ,  . ,  ( ~  " , 
U I y = 0  : 0 ,  V l y=O = - -  V = c o n s t )  , qb VC w + DCyt y = 0  = 0 , 

C;]y=h= O, C Ix=O = CO, C I t=O= CO 

05) 

for 0 -< x _-<_ Xl and 
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u ly=/= 0, Vly=/= - Vf, ~oVf Cg + OC I y=f = C / t  ) 

t 

Cyly=h=O,  f ( x ,  l) lx=xl = 0 ,  Cly=f= Cg 
(16) 

for x _> xl (after the point of gel formation). We connect the drop in the permeability of the membrane  with the 

thickness of the gel layer and represent it in the form 

" ~" (17) - - "  ) vf- 

where ~'is the characteristic coefficient of the hydraulic resistance of the gel layer. Equations (9), (10), (13)-(17) 

form a closed system and make it possible to describe the process of laminar ultrafiltration in a plane slotted 

channel.  
A method for solving the equations of convective diffusion in a channel  without gel formation is suggested 

in [3 ]. 
We will employ this method and  find a solution to problem (14)-(16) with allowance for gel formation.  For 

convenience, the equation of convective diffusion (14) will be written in a conservative form (here and  below we 

will use dimensionless quantities): 

O ( O -  1) -4- Ou(O-  1) -4- Or(O-  1) _ 1 0 2 ( O -  1) 
2 

Or O~ Or/ Pe Or/ 

We integrate this equation across the diffusional boundary layer and use boundary  conditions (15) or (16) and  the 

requirements usually applied in boundary- layer  theory O = 1, O')~ = 0 at r/ = A. Then,  before the point of gel 

formation (0 --- ~ -< ~l) we have 

o---Y f ( o  - I) d r / +  f u (O - I) dr/ = VI-" w , 
0 0 

(18) 

and after the point of gel formation (~ > ~1) we have 

0 a 0(3 
3-~ f (O -- I) dr/ + (2Og - I) -~- 

A 

+ ~ f u ( 0  - 1) dr/ = VaFg. (19) 

Here Fg = 1 - (1 - ,p)Og, Fw= 1 - (1 - ~)Ow. 
At the very point of gel formation (~e = ~1) the condition O = Og is satisfied. Let us analyze the s ta t ionary 

regime of ultrafiltration in a plane slotted channel.  Because of the very large Peeler numbers (Pe = 107), the 

thicknesses of the gel layer ~ and  the diffusional boundary layer A will be much smaller than the half-height  of 

the channel,  i.e., they lie in the region adjacent to the membrane. This fact considerably simplifies the solution of 

the problem. It can be assumed that the gel layer does not change the inner  height of the channel.  The presence 

of the gel exhibits a direct effect only  on the total hydraulic resistance of the membrane and the gel. Therefore ,  

in distributions (9), (I0),  (11), and (13) the terms f /h  can be neglected compared to unity. Moreover, in solving 
the diffusional problem we can restrict ourselves to just the first terms in the transverse coordinate y in determining 

the velocity profiles (9) and  (13). As a result, the equations of convective diffusion take the following form: before 

the gel formation point (0 < ~ -< ~1) 

a o  00  
3(1 - V ~ ) r / - - -  V . . . .  

Of Or/ 

1 020 
2 ' 

Pe Or/ 
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9"OwV + 
1 0 0  

- 0 (r/ = 0 ) ;  ( 2 0 )  Pe Or/ 

and after the gel formation point (~ >_ ~1) 

! ) dO 00  1 020 
1 -  v l- 2' 

os e Or/ Pe Or/ 

1 00  
9"OgV~ + Pe O---~ - 0  (r/ = 6 ) ,  O = O g  (r/ = 6 )  V~ = V/(I  + k / 6 ) .  (21) 

The stationary distribution of concentration near the membrane has the form 

0 = 0  w(~) [1 - 9 " ( 1  - e x p ( -  Pe Vr/))l, ~ -<~1 ,  

O = O g ( ~ )  11 -9" (1  - e x p ( -  P e V a ( r / - 3 ) ) l ,  ~ > ~ l .  

(22) 

From the physical considerations underlying boundary-layer theory and Eqs. (22) the distribution of 
concentration in a plane slotted channel can be represented for 0 _ ~ _ ~l as 

and for ~ _ ~l as 

0 w(8) 1 1 - 9 , ( 1  - e x p ( - P e V r / ) ) ] ,  O - < r / - < A ,  (23) 
O =  1, A _ < r / =  1, 

t 
o g ,  

O =  Og [ 1 - 9 ' ( 1  - e x p ( - P e V  a ( r / - 6 ) ) l ,  
1, A ~ r / = l ,  

(24) 

where Ow(~) and 6(~) are functions as yet unknown. For their determination we use integral equations (18) and 
(19). First, from relations (23) and (24) we find 

t 9"0  w 1 ~ ~ > ~ 1 "  
A = f f e - # l n F - ~ -  w ' 0 - < ~ < ~ 1 ;  A - 6 -  P e v a l n  Fg ' 

From this it is clear that formation of gel on the membrane is possible when Og < 1 /(1 - 9"). 
Substituting the distribution of velocities from formulas (20), (21) and concentrations from formulas (23), 

(24) into Eqs. (18), (19), integrating once over ~, and performing simple calculations, we obtain for 0 <_ ~ <_ ~I 

and for ~ > ~1 

9"Ow Fw ( 9"Ow]2 ( P e l 0 2 V )  Fwd ~ (25) 
0 w -  1 - Fwln - -  I n - - |  -- 

rw 2 / r w )  3(l-v ) o 

3 1 -- V~I - f V3d ~ Xg/(PeV3) 2 = f FgV3d ~ + f F w V d  ~. 
~l ~1 o 

For writing more concisely, we denote 

(26) 
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Now we will estimate the position of the point of gel formation on the membrane.  From formula (25) or 
(26) it follows that  

~1 I - V~ 1 
f rwVa  = 3 xg  - -  
o (PeV) 2 " 

(27) 

In the case of ideal selectivity formula (26) takes the simpler form 

lr~ 1 = [1 + (PeF)2 /3  (Og - In Og - (In 0 g ) 2 / 2  - 1)1-1 (27 ') 

Analytical and  numerical calculations [3 ] demonstrate the nonlinear  character of the dependence of Ow on 

~. In place of O w we substitute into the left-hand side of Eq. (27) two limiting cases: a) Ow -- Og and  b) the l inear 

behavior ew ffi 1 + V ~ ( e g -  I) /V/j l .  

Integrating Eq. (27), we obtain the estimate 

3X$ V~ 1 6Ys > > 
Fg (PeV) 2 - (1 - V~I) (~o + Fg) (PeV) 2" 

Equations (25)-(27) give a full description of the phenomenon of concentration polarization in ultrafil tration 

in a plane slotted channel  before the gel-formation point. 
We now analyze the process of ultrafiltration in a channel  after the gel-formation point. Solving Eq. (26) 

for the integral and then differentiating with respect to ~ with subsequent integration with the boundary  condition 

V~ = V at ~ = ~1, we find a transcendental  equation that describes the process of ultrafiltration with gel formation. 
We denote 3Zg/FgpeXv 2 -- F. Then 

1 -- V~ V3(I + F )  + _ 
1 - 

- ( 1 / F )  1 / 2  (1 + F) [arctan ( I / F )  1/2 - arctan ( V a / V F )  1 / 2  . ( 2 8 )  

For ~o = I 

+ 

+ - v ,  1 
1/2 _ V~ 1 1/2 

If V~l ~ 0, we can obtain a simpler solution: 

+ VO 1 -  V~I) 
¢ V,¢;  " 

(28 ') 

V6 / 2 Z g ] _ i / 3  --9"- = [1 + (V~ - V~I ) rg pe2V 2 (29) 

or in the case of ~o = 1 

- I / 3  

When V ~ / V ~  1 >> 1, Eq. (29) takes the form 

(29') 
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V 3 --- (2 Y~g/Fg Pe2~) 1/3 , (30) 

and for ~o = 1 [( ) 1/3 
1n205 / p e 2 ~  

V$_- 2 O g - l n O g -  2 - 1 (30,) 

Since the velocity V does not enter  into formula (30), this means  that  the t r ansmembrane  velocity V,~ is 

independent  of the pressure (the resistance of the gel layer  considerably exceeds the resistance of the membrane ,  

and an increase in the pressure is compensated for by an increase in the resistance of the gel layer) .  

Thus ,  the pat tern of laminar  continuous-flow ultrafil tration in a plane channel  can general ly  be divided 

into three regions. 

In the first region - from the inlet into the channel  and before the gel-formation point (de te rmined  from 

Eq. (27)) - the main resistance to t r ansmembrane  flow is offered by the membrane .  In this section the fi l tration 

velocity Vwill be direct ly proportional  to the pressure applied (for the resistance of membranes  Darcy ' s  law is valid 

[4 ], which has proved to be very efficient).  

In the second region - from the point of gel formation and fa r ther  downst ream along the main  flow - the 

hydraul ic  resistances of the membrane  and  the gel layer  will be of the same order  of magni tude.  Here  the fi l tration 

velocity V~ of (28) depends nonl inear ly  on the pressure (it is associated with 1,9. 

In the third region,  when the hydraul ic  res is tance of the gel layer  cons iderably  exceeds  that  of the 

membrane,  the fil tration velocity V~ ceases to depend on the initial pressure,  and all the dis tr ibut ions over  the 

filtration velocity from the above two regions reduce to the single dependence  (30). 

Let us now dwell on n o n s t a t i o n a r y  f i l t ra t ion with gel fo rmat ion .  From physical  cons ide ra t ions  the  

nons ta t ionary  process can be cons idered  as two limiting cases: highly nons ta t ionary  and  s ta t ionary .  For  the 

especially nons ta t ionary  regime 

0 A 

0--7 f ( 0  - 1) dr/ = FwV, 0 -- r _< 'c I , 

0 

0 A 06 = FgV6 r > T  I O~ f ( 0  -- l) dr/ + (20g - l) ~ -  , _ . 

(31) 

Here  the time rl is the beginning of gel formation. 

To solve the nons t a t i ona ry  problem we use a genera l ly  app l ied  app roach  where  the  n o n s t a t i o n a r y  

distribution of concentrat ion is prescribed from the solution of the s ta t ionary  problem. Then ,  from Eq. (31), with 

account for distributions (23) and (24), on condition that Ow and 6 depend on the time and  with the obvious 

relationship 

o6 v o v,~ 

OT kV~6 0T 

we obtain: 

 oow ) 
O w -  F w l n ~ -  1 = PeV F w V d r ,  0 < r  < T  I ,  

0 

V3 [ 2 (Vz - Vz'I) ] -1/2 
-- I + Z r /Fg  PeV + (2Og - l ) / k  ' T > T  1 . 

(32) 
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Here  X~ = Og - I - Fgln ~oOg/Fg. 

Let us est imate the beginning of the time of gel formation. We proceed similarly to the s ta t ionary  case. 

T h e n  

Y'r 2Zr 
- - >  Vr  I > ( 3 3 )  
PeVFg - PeV (~, + Fg)" 

For ~o = 1 

V't" 1 = ( O g  - In Og - 1 ) / P e r .  (33 ')  

It is per t inent  here  to note  that formulas (32) and (33) are  also valid for describing the process of ul t raf i l t rat ion 

in a cell without forced mixing. T h e y  make it possible to de te rmine  the diffusion coefficient of the solute in the 

solution from the t ime dependence  of the specific performance recorded exper imental ly  in a cell without  mixing 

[51. 
If Vrl -~ 0 and  the times considered are such that Vr/Vrl >> 1, then the filtration velocity will decrease  in 

time according to the relation 

V ~ (  2 k V r )  -1 /2  (34) 
- -~- -  1 + 2 ~ 1  

In conclusion, we estimate the time r s needed to at tain the s ta t ionary regime of ultrafi l trat ion in a plane 

channel  with gel formation on the membrane .  Assuming V~ 1 to be small, we equate the r ight -hand sides of Eqs. 

(29) and  (32): 

I/'°-' "/ Vrs = Vrl + 2 -  2Zg + I - 1 ~k + Fg fi-eV " 

For distances from the channel  inlet for which V~/1,2jl >> 1, we obtain a simpler relation: 

(as) 

which for ~o = 1 has the form 

, r F, (.o , <36  
v  :-it =< ) ' 

v s= t + 

Thus ,  the theory  suggested offers a description of laminar  ultrafil tration in a plane channel  with gel 

formation on the membrane  and allows one to compare exper imental  and theoretical data.  

The  work was carr ied out with support  from the Fundamenta l -Research  Fund of the Republic of Belarus, 

grant No. T94-020,  J anua ry  27, 1995. 

N O T A T I O N  

A A 

= x/h ,  71 = y/h,  dimensionless longitudinal and t ransverse coordinates;  r = tuo/h, u = u/uo, v = v /u  O, 
dimensionless time and velocity vector components;  h, half-height  of the plane channel;  u0, mean velocity at the 

channel  inlet; t, time; Pe = uoh/D, diffusional Peeler number;  D, diffusion coefficient; /~,  coefficient of dynamic  

viscosity; f,  thickness of the gel layer;  6 = f /h ,  dimensionless thickness of the gel layer;  A = A/h ,  dimensionless  

thickness of the diffusional boundary  layer; O = C/Co, dimensionless concentrat ion of the solute; Ow = Cw/Co, 
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6)g = Cg /Co ,  dimensionless concentrations on the wall and of gel formation; k =-kh, dimensionless characteristic 
coefficient of hydraulic resistance of the gel layer; ~o, selectivity coefficient of the membrane; V-- V / u  o, V,3 = 

Vi /uo,  dimensionless transmembrane velocity. 
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